<u>Step by Step: Hess's Law (see at end for supplemental notes on $\Delta H_{\text{formation}}$ with Hess's Law)</u>

The enthalpy change (ΔH_r^{o}) for a reaction is the sum of the enthalpy changes for a series of reactions, that add up to the overall reaction.

Steps: For each reaction: 1) Check to see, if the compounds are on the correct sides of the reaction. **If not, reverse the <u>entire</u> reaction, and change the sign of Δ H.

2) Check to see, if all of the unwanted compounds will cancel completely. **If not, multiply an <u>entire</u> reaction by a number so that they do cancel completely and multiply ΔH by that same number.

Left \rightarrow Right		
Ex.1) Given: $2 \text{ HF}_{(g)} \rightarrow H_{2(g)} + F_{2(g)}$	$\Delta H = +537 \text{ kJ}$	(1 st reaction)
$\frac{1}{2} C_{(s)} + F_{2(g)} \rightarrow \frac{1}{2} CF_{4(g)}$	$\Delta H = -340. \text{ kJ}$	$(2^{nd} reaction)$
$2 \operatorname{C}_{(\mathrm{s})} + 2 \operatorname{H}_{2(\mathrm{g})} \rightarrow \operatorname{C}_{2}\operatorname{H}_{4(\mathrm{g})}$	$\Delta H = 52 \text{ kJ}$	$(3^{rd} reaction)$

Find ΔH_r^{o} for: $C_2H_{4(g)} + 6 F_{2(g)} \rightarrow 2 CF_{4(g)} + 4 HF_{(g)}$

Look at the first reaction to see, if the compounds are on the correct sides.

*The HF is on the left side of the 1st reaction and it is on the right side of the blue reaction, so that is not OK. We need to flip this reaction and make it go the other direction.

*The H₂ is on the right side of the 1st reaction, but it is not in the blue reaction, so that does not help. *The F₂ is on the right side of the 1st reaction and it is on the left side of the blue reaction, so that is not OK. We need to flip this reaction and make it go the other direction. {We cannot just move one compound, because then the reaction will not balance, so we must flip the entire reaction and make it go backwards.} If we flip the reaction, the Δ H sign will flip as well. The positive 537 will now be negative.

 $H_{2(g)} + F_{2(g)} \rightarrow 2 HF_{(g)}$ $\Delta H = -537 \text{ kJ}$ (F₂ & HF now on correct sides , now -537)

Look at the second reaction.

*The C is on the left side of the 2^{nd} reaction, but it is not in the blue reaction, so that does not help. *The F₂ is on the left side of the 2^{nd} reaction and it is on the left side of the blue reaction, so that is OK.

*The CF₄ is on the right side of the 2nd reaction and it is on the right side of the blue reaction, so that is OK. The 2nd reaction stays the way it is written, since F₂ and CF₄ are already on the correct sides.

$$\frac{1}{2}C_{(s)} + F_{2(g)} \rightarrow \frac{1}{2}CF_{4(g)}$$
 $\Delta H = -340. \text{ kJ} \quad (F_2 \& CF_4 \text{ on correct sides already})$

Look at the third reaction.

*The C is on the left side of the 3^{rd} reaction, but it is not in the blue reaction, so that does not help. *The H₂ is on the left side of the 3^{rd} reaction, but it is not in the blue reaction, so that does not help. *The C₂H₄ is on the right side of the 3^{rd} reaction, but it is on the left side of the blue reaction. The C₂H₄ is on the wrong side of the reaction. {We cannot just move one compound, because then the chemistrynoteslecture.com © 2011 reaction will not balance, so we must flip the entire reaction and make it go backwards.} If we flip the reaction, the ΔH sign will flip as well. The positive 52 will now be negative.

 $C_2H_{4(g)} \rightarrow 2 C_{(s)} + 2 H_{2(g)}$ $\Delta H = -52 \text{ kJ}$ (C_2H_4 was on wrong side, now -52)

So this is what we have so far:

$H_{2(g)} + F_{2(g)} \rightarrow 2 HF_{(g)}$	$\Delta H = -537 \text{ kJ}$
$\frac{1}{2}C_{(s)} + F_{2(g)} \rightarrow \frac{1}{2}CF_{4(g)}$	$\Delta H = -340. \text{ kJ}$
$\underline{C_2H_{4(g)} \rightarrow 2 C_{(s)} + 2 H_{2(g)}}$	$\Delta H = -52 \text{ kJ}$

Now we must completely cancel all of the compounds that were not in the blue reaction. Look up above: H_2 and C were in the 3 top reactions, but were not in the blue reaction.

To make the H₂ cancel we must multiply the 1st reaction by 2. The Δ H will also be multiplied by 2. To make the C cancel we must multiply the 2nd reaction by 4. The Δ H will also be multiplied by 4. Just like the redox reactions, if the compounds are on opposite sides of the arrows, we can cancel them by subtracting from both sides of the arrow!

 $\begin{array}{ll} 2 \ (\ H_{2(g)} + F_{2(g)} \rightarrow 2 \ HF_{(g)} \) & \Delta H = -537 \ kJ & X \ 2 & (need \ to \ cancel \ H_2) = \ -1074 \ kJ \\ 4 \ (\ ^{1}\!\!\!\! 2 \ C_{(s)} + F_{2(g)} \rightarrow \ ^{1}\!\!\! 2 \ CF_{4(g)} \) & \Delta H = -340. \ kJ & X \ 4 & (need \ to \ cancel \ C) \ = -1360 \ kJ \\ \hline \frac{C_2 H_{4(g)} \rightarrow 2 \ C_{(s)} + 2 \ H_{2(g)}}{C_2 H_{4(g)} + 6 \ F_{2(g)} \rightarrow 2 \ CF_{4(g)} + 4 \ HF_{(g)} \quad \Delta H = -2486 \ kJ \end{array}$

When the reactions are added, we have $1 C_2H_4$ on the left side.

We have 2 X 1 F_2 (1st reaction) added to 4 X 1 F_2 (2nd reaction) = 6 F_2 . {The F_2 in the 2 reactions are added, since they are on the same side of the reactions. Remember they only cancel, if they are on opposite sides.}

On the right side there are 2 X 2HF = 4 HF and 4 X $\frac{1}{2}$ CF₄ = 2 CF₄.

This summation reaction should match the blue reaction, which it does. Then add all of the energies together to get the total energy of -2486 kJ.

Ex. 2) Given the following data:

$$\begin{array}{c} \overline{\text{SO}}_{3(\text{g})} \rightarrow \overline{\text{S}}_{(\text{s})} + 3/2 \text{ O}_{2(\text{g})} \\ 2 \ \overline{\text{SO}}_{2(\text{g})} + \overline{\text{O}}_{2(\text{g})} \rightarrow 2 \ \overline{\text{SO}}_{3(\text{g})} \end{array} \begin{array}{c} \Delta H = +395 \text{ kJ} \\ \Delta H = -198 \text{ kJ} \end{array} \begin{array}{c} (1^{\text{st}} \text{ reaction}) \\ (2^{\text{nd}} \text{ reaction}) \end{array}$$

Calculate ΔH for the reaction: $S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)}$ Look at the 1st reaction:

*The SO₃ is on the left side of the 1^{st} reaction, but is it not in the blue reaction, so that does not help. *The S is on the right side of the 1^{st} reaction and on the left side of the blue reaction, so that is on the wrong side.

*The O_2 is on the right side of the 1st reaction and on the left side of the blue reaction, so that is also on the wrong side.

The 1^{st} reaction needs to be flipped, since S and O_2 are on the wrong sides.

$$\begin{split} S_{(s)} + 3/2 \ O_{2(g)} & \rightarrow SO_{3(g)} \\ & \Delta H = -395 \ \text{kJ} \\ & \text{the } +\Delta H \ \text{will now be } -. \end{split}$$

Look at the 2nd reaction:

*The SO₂ is on the left side of the 2^{nd} reaction, but on the right side of the blue reaction. It is on the wrong side.

*The O_2 is on the left side of the 2nd reaction and on the left side of the blue reaction, so that is OK. *The SO₃ is on the right side of the 2nd reaction, but it is not in the blue reaction, so that does not help. We have a problem, because the SO₂ is on the wrong side, but the O₂ is on the correct side. We need to figure out which is the most important! The SO₂ in that 2nd reaction is the only SO₂ in the first two reactions, but there is O₂ in both reactions #1 and #2. The SO₂ is the most important, since it is in only one location, so it must go on the correct side. The 2nd reaction will need to be flipped to get the SO₂ to the right side. {The O₂ will go on the wrong side, but there is O₂ in the 1st reaction, that will go on the correct side. After we add the reactions and cancel, there will

hopefully be enough
$$O_2$$
 on the correct side.}

 $2 \text{ SO}_{3(g)} \rightarrow 2 \text{ SO}_{2(g)} + \text{O}_{2(g)}$ $\Delta \text{H} = +198 \text{ kJ}$ { now that it is flipped, the - ΔH will now be +.}

So far we have this:

$$\begin{array}{ll} S_{(s)} + 3/2 \ O_{2(g)} \to SO_{3(g)} & \Delta H = -395 \ kJ \\ 2 \ SO_{3(g)} \to 2 \ SO_{2(g)} + O_{2(g)} & \Delta H = +198 \ kJ \end{array}$$

Now we need to cancel out any compounds that are not in the blue reaction. That means we need to cancel the SO_3 .

To cancel the SO₃ we need to multiply the 1st reaction by 2, and multiply the ΔH by 2. 2 (S_(s) + 3/2 O_{2(g)} \rightarrow SO_{3(g)}) $\Delta H = -395$ kJ X 2 = -790 kJ

$$\frac{2 \text{ SO}_{3(g)}}{2S_{(s)} + 2O_{2(g)}} \xrightarrow{\rightarrow} 2 \text{ SO}_{2(g)} + O_{2(g)} \qquad \Delta H = +198 \text{ kJ}$$
$$\rightarrow 2SO_{2(g)} \qquad \Delta H = -592 \text{ kJ}$$

When the reactions are added we will get on the left side 2 X S = 2 S. For the O₂: On the left there are 2 X 3/2 O₂ which equals 3 O₂. chemistrynoteslecture.com © 2011

On the right there is O_2 , so just 1 O_2 . If we have, $3 O_2$ on the left and $1 O_2$ on the right.

> $3 O_2 \rightarrow 1O_2$ $2 O_2 \rightarrow$

We can subtract off 1 O_2 from each side, leaving 2 O_2 on the left side.

And there are 2 SO_2 on the right side.

 $2S_{(s)} + 2O_{2(g)} \rightarrow 2SO_{2(g)}$ $\Delta H = -592 \text{ kJ}$

One last problem: Our reaction does not match the blue reaction, because it is two times too big. So we must divide by 2. Also divide the ΔH by 2.

$$S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)} \qquad \Delta H = -296 \text{ kJ}$$

<u>Supplemental Notes:</u> $\Delta H_{\text{formation}}$ and why $\sum n \Delta H_{\text{products}}$ - $\sum n \Delta H_{\text{reactants}}$ works.

 $\Delta H_{\text{reaction}} = \sum n \Delta H_{\text{products}}$ - $\sum n \Delta H_{\text{reactants}}$ can be explained by doing a Hess's Law problem with the $\Delta H_{\text{formation}}$ reactions of the reactants and products in the overall reaction.

Overall Reaction: $2 C_2 H_{6(g)} + 7 O_{2(g)} \rightarrow 4 CO_{2(g)} + 6 H_2 O_{(g)}$

<u>**1**st step:</u> Write the $\Delta H_{formation}$ reactions for each of the reactants and products.

a) When you do this, every metal, metalloid and non-metal is written as a single element, except for the gases and halogens. (Metals: Fe_(s), Na_(s) etc., Metalloids: Si_(s), Ge_(s) etc., Non-metals: C_(s), S_(s) etc.)

b) Halogens and gases, that are not noble gases, are written as dimers (in two's). (Halogens: F_{2(g)}, Cl_{2(g)}, Br_{2(l)}, I_{2(s)}, Gases: H_{2(g)}, N_{2(g)}, O_{2(g)})

Noble gases have full orbital layers and are stable being alone: He_(g), Ne_(g) etc.

Balance the equation $C_{(s)} + H_{2(g)} \rightarrow C_2 H_{6(g)} \quad \rightarrow \rightarrow \quad 2 \ C_{(s)} + 3 \ H_{2(g)} \rightarrow C_2 H_{6(g)} \quad \Delta H_{reaction} = \Delta H_{formation} = -85 \ kJ/mol$ \uparrow of C₂H₆ You can find the $\Delta H_{\text{formation}}$ of the compound from the ΔH , ΔG , and ΔS Table in your textbook.

 $O_{2(g)}$ is just $O_{2(g)}$, so there is no formation reaction.

$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)} \rightarrow \rightarrow CO_{2(g)} \rightarrow CO_{2(g)} \rightarrow CO_{2(g)} \qquad \Delta H_{reaction} = -393 \text{ kJ/mol}$$
of CO₂

 $H_{2(g)} + O_{2(g)} \rightarrow H_2O_{(g)} \rightarrow D_{2(g)} \rightarrow 2H_{2(g)} \rightarrow 2H_2O_{(g)} \rightarrow 2H_2O_{(g)} \rightarrow \Delta H_{reaction} = 2X \Delta H_{formation} = 2X (-242 \text{ kJ/mol}) = 2X (-242 \text{$ **Since there are 2 mols of H₂O in the balanced reaction the of H₂O -484 kJ/mol $\Delta H_{reaction}$ will be two times the $\Delta H_{formation}$ of H₂O. Or another way of thinking about it, is that the $\Delta H_{\text{formation}}$ will be half the $\Delta H_{\text{reaction}}$.

chemistrynoteslecture.com © 2011

2nd step: Use the above reactions in a Hess's Law problem to solve for the overall reaction.

Find $\Delta H_{\text{reaction}}$ for : 2 C₂H_{6(g)} + 7 O_{2(g)} \rightarrow 4 CO_{2(g)} + 6 H₂O_(g)

Using:	$2 C_{(s)} + 3 H_{2(g)} \rightarrow C_2 H_{6(g)}$	$\Delta H_{\text{formation}} = -85 \text{ kJ/mol}$
	$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$	$\Delta H_{\text{formation}} = -393 \text{ kJ/mol}$
	$2 \operatorname{H}_{2(g)} + O_{2(g)} \rightarrow 2 \operatorname{H}_2O_{(g)}$	$\Delta H_{\text{formation}} = -484 \text{ kJ/mol}$
	$C_2H_{6(g)} \rightarrow 2 C_{(s)} + 3 H_{2(g)}$	$\Delta H_{\text{formation}} = +85 \text{ kJ/mol}$ (flipped, so C_2H_6 is on the left, like the reaction we are solving for, ΔH changes sign, since now backwards)
	$C_{(s)} + O_{2(g)} \to CO_{2(g)}$	$\Delta H_{\text{formation}} = -393 \text{ kJ/mol}$ (stays, since CO ₂ is on the right, like the reaction we are solving for)
	$2 \hspace{0.1cm} H_{2(g)} \hspace{0.1cm} + \hspace{0.1cm} O_{2(g)} \hspace{0.1cm} \rightarrow \hspace{0.1cm} 2 \hspace{0.1cm} H_2 O_{(g)}$	$\Delta H_{\text{formation}} = -484 \text{ kJ/mol}$ (stays, since H ₂ O is on the right, like the reaction we are solving for)
		** The energies are multiplied when the reactions are multiplied.
2 (C ₂ H	$H_{6(g)} \rightarrow 2 C_{(s)} + 3 H_{2(g)}) \Delta H$	formation = +85 (X2) = 170 kJ/mol (multiply by 2 to cancel H2, making 6 H2)
4 ($C_{(s)}$ +	$O_{2(g)} \rightarrow CO_{2(g)}) \qquad \Delta H_{1}$	formation = -393 (X4) = -1572 kJ/mol (multiply by 4 to cancel C)
<u>3 (2 H_{2(g)} +</u>	$O_{2(g)} \rightarrow 2 H_2 O_{(g)}) \qquad \Delta H_2$	$f_{\text{formation}} = -484 \text{ (X3)} = -1452 \text{ kJ/mol} (\text{multiply by 3 to cancel H}_2, \text{ making 6 H}_2)$
$2 C_2 H_{6(g)} +$	$7 O_{2(g)} \rightarrow 4 CO_{2(g)} + 6 H_2 O_{2(g)}$	$\Delta H = -2854 \text{ kJ/mol}$

Why this works:

The 1st reaction of the three reactions in the Hess's Law problem breaks C_2H_6 apart to it's elements $C_{(s)}$ and $H_{2(g)}$. This is the opposite of the $\Delta H_{\text{formation}}$, since C_2H_6 is broken apart and not formed. (The reaction was flipped and ΔH changed sign.) Hess's Law has no reaction for the breaking down and forming of $O_{2(g)}$, since it is already in it's elemental state.

Once the reactants are broken apart to their elements, they can be reformed into their products. So the $C_{(s)}$, $H_{2(g)}$, and $O_{2(g)}$ are formed into the products in the 2nd and 3rd reactions of the Hess's Law problem.

 $\begin{array}{ccc} & \text{Broken Down} & \text{Reformed} \\ C_2H_6 & \longrightarrow \longrightarrow \longrightarrow & C+H_2 & \longrightarrow \longrightarrow \longrightarrow & CO_2+H_2O \\ O_2 & \dots & O_2 \end{array}$

The total of the energies for these changes was calculated in Hess's Law.

<u>**3**rd step:</u> Prove that this equation works: $\Delta H_{reaction} = \sum n \Delta H_{products} - \sum n \Delta H_{reactants}$

(These ΔH 's are $\Delta H_{\text{formations}}$ of the compounds.)

 $\begin{array}{rcl} 2 \ C_2 H_{6(g)} + \ 7 \ O_{2(g)} \rightarrow & 4 \ CO_{2(g)} + 6 \ H_2 O_{(g)} & & & \downarrow \Delta H_{formation} \ of \ H_2 O \\ \Delta H_{reaction} = \left[(4 \ mol \ CO_2) \ (-393 \ kJ/mol) + (6 \ mol \ H_2 O) \ (-242 \ kJ/mol) \ \right] - & \\ & & \left[\ (2 \ mol \ C_2 H_6) \ (-85 kJ/mol) + (7 \ mol \ O_2) \ (0 \ kJ/mol) \right] \end{array}$

 $\Delta H_{reaction} = -1572 - 1452 + 170 = -2854 \text{ kJ/mol}$

The above equation has $\Delta H_{\text{products}} - \Delta H_{\text{reactants}}$, because the **product** $\Delta H_{\text{formations}}$ **remain positive** in the Hess's Law problem and the **reactant** $\Delta H_{\text{formations}}$ **are negative**, since they are flipped in the Hess's Law problem.

Other Sample $\Delta H_{\text{formations}}$:

CHCl ₃ :	$C_{(s)} + H_{2(g)} + Cl_{2(g)} \rightarrow CHCl_{3(g)}$	$\rightarrow \rightarrow$	$2 C_{(s)} + H_{2(g)} + 3 Cl_{2(g)} \rightarrow 2 CHCl_{3(g)}$ $\Delta H_{reaction} = 2 X \Delta H_{formation}$ of CHCl ₃
SO ₂ :	$S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)}$	$\rightarrow \rightarrow$	$S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)}$
SO ₃ :	$S_{(s)} + O_{2(g)} \rightarrow SO_{3(g)}$	$\rightarrow \rightarrow$	$2 \mathbf{S}_{(s)} + 3 \mathbf{O}_{2(g)} \rightarrow 2 \mathbf{SO}_{3(g)}$ $\Delta \mathbf{H}_{\text{reaction}} = 2 \mathbf{X} \Delta \mathbf{H}_{\text{formation}}$ of SO ₂
NO ₂ :	$N_{2(g)} + O_{2(g)} \longrightarrow NO_{2(g)}$	$\rightarrow \rightarrow$	$N_{2(g)} + 2 O_{2(g)} \rightarrow 2 NO_{2(g)}$ $\Delta H_{reaction} = 2 X \Delta H_{formation}$ of NO ₂
H_2SO_4 :	$H_{2(g)} + S_{(s)} + O_{2(g)} \longrightarrow H_2 SO_{4(g)}$	$\rightarrow \rightarrow$	$H_{2(g)} + S_{(s)} + 2 O_{2(g)} \rightarrow H_2SO_{4(g)}$
KMnO ₄ :	$K_{(s)} + Mn_{(s)} + O_{2(g)} \rightarrow KMnO_{4(s)}$	$\rightarrow \rightarrow$	$K_{(s)} + Mn_{(s)} + 2 O_{2(g)} \rightarrow KMnO_{4(s)}$

Remember: Every <u>metal, metalloid and non-metal is written as a single element, except</u> for the gases and halogens. (Metals: Fe_(s), Na_(s) etc., Metalloids: Si_(s), Ge_(s) etc., Non-metals: C_(s), S_(s) etc.)

Halogens and gases, that are not noble gases, are written as dimers (in two's).

(Halogens: $F_{2(g)}$, $Cl_{2(g)}$, $Br_{2(l)}$, $I_{2(s)}$ Gases: $H_{2(g)}$, $N_{2(g)}$, $O_{2(g)}$) Noble gases have full orbital layers and are happy as loners: $He_{(g)}$, $Ne_{(g)}$ etc.

End of Notes